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There is increasing use of high-resolution NMR spectroscopy to
xamine variations in cell metabolism and/or structure in response
o numerous physical, chemical, and biological agents. In these
ypes of studies, in order to obtain relative quantitative informa-
ion, a comparison between signal intensities of control samples
nd treated or exposed ones is often conducted. The methods thus
ar developed for this purpose are not directly related to the
verall intrinsic properties of the samples, but rather to the addi-
ion of external substances of known concentrations or to indirect
easurement of internal substances. In this paper, a new method

or quantitatively comparing the spectra of cell samples is pre-
ented. It depends on a normalization algorithm which takes into
onsideration all cell metabolites present in the sample. In partic-
lar, the algorithm is based on maximizing, by an opportune sign
ariable measure, the spectral region in which the two spectra are
uperimposed. The algorithm was tested by Monte Carlo simula-
ions as well as experimentally by comparing two samples of
nown contents with the new method and with an older method
sing a standard. At the end, the algorithm was applied to real
pectra of cell samples to show how it could be used to obtain
ualitative and quantitative biological information. © 1999 Academic

ress

Key Words: NMR; algorithm; normalization; NMR of cells.

INTRODUCTION

There is increasing use of high-resolution NMR spect
opy to examine variations in cell metabolism and/or struc
n response to numerous physical, chemical, and biolo
gents. In these types of studies, in order to obtain rel
uantitative information, a comparison between signal inte

ies of control samples and treated or exposed samples is
onducted. For this purpose various methods have been d
ped. For instance, reference compounds added directly
ell samples have been used. These compounds may b

1 The MaSNAl program, an Apple Power PC version or the C versio
reely available from Dr. Rocco Romano, Dipartimento di Scienze Fis
niversitàdi Napoli Federico II, Istituto Nazionale per la Fisica della Mate
nità di Napoli, Complesso Universitario Monte S. Angelo, Via Cint
0126 Naples, Italy. E-mail: rocco.romano@na.infn.it. Please send a s

etter confirming that the program will be used for scientific, noncomme
urposes only.
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hetic, such as sodium 3-trimethylsilyl[2,2,3,3-d4]propionate
1, 2), or naturally occurring, such as glucose in13C spectra an
norganic phosphate in31P spectra (3). In addition, enzymati
etermination of the concentration of a metabolite prese

he samples themselves (e.g., the alanine methyl double
subsequent comparison of the intensities of resonance

hat of the metabolite itself have also been utilized (4). All
hese methods are related not directly to the overall intr
roperties of the samples, but rather to the addition of ext
ubstances of known concentration or to indirect measure
f internal substances.
In this paper, a new method for quantitatively comparing

pectra of cell samples is presented. It is based on a no
zation algorithm which takes into consideration all cell m
abolites present in the sample. Since concentration differe
esult in proportional variations of spectral intensities, non
ortional changes can most likely be attributed to the effec

he agent. The proportional variations are described by
ormalization factorR, which can be calculated by the alg
ithm. In particular, it consists in maximizing, by using a s
ariable measure, the spectral regions in which spectral
re proportional. The algorithm was tested by Monte C
imulations, which demonstrated its ability to determine
ormalization factor with very low bias. In order to test
alidity of the algorithm experimentally, two samples
nown contents were compared using a traditional met
ased on the use of a standard, and the new one, based
lgorithm.
At the end, the algorithm was applied to real spectra of

amples showing how it could be used to obtain qualitative
uantitative biological information.

RESULTS AND DISCUSSION

he Algorithm

Let us consider two NMR spectra,c1(n) andc2(n), wheren
s the frequency. IfSp is the entire spectrum, let us denote
p2 SR (normalizable regions) the spectral regions relativ

he baseline and to the spectral lines which have proport
ntensities due to concentration differences, whileSR denotes

s
,

ed
l
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116 ROMANO ET AL.
hose regions relative to spectral lines with various ratio in
ities due to effects induced by interaction with a partic
gent. Two spectral points,c1(n0) andc2(n0), can be consid
red physically superimposed, for a given estimate of
ormalization factorK, if their distance,

d~n0; K! ; uc2~n0! 2 Kpc1~n0!u, [1]

s equal to or less than 2e, wheree is the rms noise. If the tw
bove-mentioned spectra are correctly normalized, spe
oints belonging to the normalizable regionsSp2 SR are well
uperimposed, such that the area between the spectra in
egions is at a minimum. An estimate of the normaliza
actorR can then be obtained by finding the value ofK which
inimizes the integral

E
Sp2SR

d~n; K!dn. [2]

nfortunately, in the integration domain of the integral in
2] there is theSR set, which is not known, being dependent
he unknownR parameter.

Let us define a new effective distance,

d~n0; K! ; u ~d~n0; K! 2 2e!d~n0; K!, [3]

hereu ( x) is the step function of Heaviside (5, 6), defined by

u ~ x! 5 H1 for x . 0
0 for x # 0, [4]

hich is zero for each pair of physically superimposed po
Let us consider theS family of SK sets,

SK 5 $n [ Sp: d~n; K! . 0%. [5]

y definition, SR belongs to this family. Furthermore, let
efine thedegree of diversitybetween the two spectra as
ercentage ratio betweenSR and Sp. The degree of diversit
an be considered to be a measure of the variations induc
nteraction with the agent.

If the degree of diversity of the two spectra is less than 5
ne has to expect thatSR is the minimum size set inS. In fact, for
5 0 (that is, for ideal spectra without noise), if the degre
iversity of the two spectra is less than 50% (i.e., forK 5 Rmore

han 50% of spectral points are superimposed) andSR is not the
inimum set inS, there should be aK value,K 5 K* Þ R, such

hat the number of points inSK* is less than the number of poin
n SR. In such a case, forK 5 K* Þ R more than 50% of th
pectral points are well superimposed. Thus, forK 5 R, more than
0% of spectral points should not be superimposed, be
oints which are superimposed forK 5 K* Þ R cannot be
-
r

e
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uperimposed forK 5 R. But that is in contrast with the hypot
sis that the degree of diversity is less than 50% and thus, foe 5
, SR must be the minimum set inS.
For this reason, one may ask that the size of the normali

egion,

I ~K! 5 E
Sp2SK

dn, [6]

hould be a maximum whenK 5 R. This condition is suffi
ient by itself to give an estimate for the normalization fa

provided that a degree of diversity of less than 50%
pectra not to noisy are considered.
For the S family, a set of measuresmK({ n}) for which

K(SK) 5 0 for all K can be easily constructed. Thus,
bove-mentioned integral can be rewritten as

I ~K! 5 E
Sp

dmK~n!. [7]

he simplest family of measures having a null value onSK is
he Dirac one (6),

mKD
~$n%! 5 x ~2`,0#~d~n; K!!, [8]

ith x (2`,0](d(n; K)) being the characteristic function of (2`,
], defined by the relation (6)

x ~2`,0#~ x! 5 H1 if x [ ~2`, 0#
0 if x [/ ~2`, 0# . [9]

With this measure, maximizing the integral in Eq. [7]
quivalent to maximizing the number of superimposed spe
oints. In the above description, the only effect of noise
idered thus far is defining as superimposed those poin
hich d(n; K) ,5 2e. However, noise also produces cas
uperpositions, that is, superpositions that cannot be cons
o belong to the normalizable regions, and prevents s
uperpositions that ought to be present. In addition, it shou
onsidered that isolated crosslinks (points of intersection
ween two spectral lines) also satisfy the conditiond(n; K) #

and thus may be improperly included in the integral of
7]. In fact, crosslinks cannot belong to the normalizable
ions where spectral lines have all the same proportionality

hus cannot intersect between themselves, but from the
easure’s point of view they are superimposed points and
e included in the integral of Eq. [7]. In order to consider th
ffects, a measure which assigns a weight to points bas

heir neighbors must be introduced. It can be assumed t
andom noise superposition event or a crosslink is isolated
hus the neighboring points are not superimposed, whn
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117ALGORITHM FOR NMR SPECTRAL NORMALIZATION
alues from normalizable regions have neighboring po
hich are also superimposed.
In order to take these considerations in account, the m
um superposition normalization algorithm, which will
enoted as MaSNAl, is presented. In particular this new a
ithm is based on the sign variable measure (5–8)

mMaSNAl~$n%!

5 x ~2`,0#~d~n; K!! E
n23b

n13b

~1 2 2u ~d~n9; K!!!

3 e2~n2n9! 2/b 2
dn9, [10]

hereb is an opportune constant and the other quantities
lready been defined.
The first factor in Eq. [10] is the Dirac term, which allo

MaSNAl({ n}) to satisfy the conditionmMaSNAl(SK) 5 0 for all K.
he second factor assigns to then values a weight whic
epends upon the neighboring points in the interval (n 2 3b, n

3b). In fact, due to the Gaussian weighting, if the limits
he integral were changed to (2`, 1`), the measure would n
e affected very much. To each neighboring superimposn9
alue is assigned a weight ofe2~n2n9! 2/b 2

which depends on th
istance ofn9 from n, while to the nonsuperimposedn9
alues, a weight of2e2~n2n9! 2/b 2

is assigned. In this manne
he intrinsic symmetry between superimposed and no
erimposed neighboring points is respected andn values
hich have the majority of neighboring points super
osed give a greater contribution to the integral

I ~K! 5 E
Sp

x ~2`,0#~d~n; K!! E
n23b

n13b

~1 2 2u ~d~n9; K!!!

3 e2~n2n9! 2/b 2
dn9dn, [11]

hich must be maximized. On the other hand,n values which
ave many nonsuperimposed neighboring points can ac
ive a negative contribution.
It should be noted that the measure presented above de

n the parameterb. Nevertheless, it can be shown that
ependence is very weak and that, in particular, there

hreshold such that forb values greater than this threshold,
esults are practically independent of the parameter itself

imulations Testing the Algorithm

Both simulated spectra and experimental1H NMR spectra o
nown contents were utilized to test the MaSNAl algorith
he simulated spectra were generated by Fourier transfo

ion of complex superposition of exponential decaying s
oids with additive Gaussian noise. Each point of these M
arlo simulations consisted of 50 independent Gaussian
ts

i-

o-

ve

u-

-

lly

nds

a

.
a-
-
te
ise

ealizations of couples of spectra (each FID consisting of 2
oints, zero-filled to 32,768 points and then Fourier tr

ormed). The program was written in C1 and to generat
andom numbers the Minimal random number generato
ark and Miller with Bays–Durham shuffle and added s
uards was used (9). Each spectrum was made of 81 spec

ines with the majority of spectral lines having amplitudes
atio of 1:2. The range of amplitudes were, in arbitrary un
rom 35,000 to 60,000 (the range presented is relative to
pectra with smaller amplitudes, so that the same range m
uplicated for the amplitudes of spectra with greater am

udes). The line width range was 20–96 Hz. The numbe
onproportional spectral lines, that is, of those spectral
aving ratios different from 1:2, was varied from 2 to
lways with 81 as the total number of spectral lines
pectrum. The amplitudes of these spectral lines were di
ted between those having a greater intensity in spectrum

hose having a greater intensity in spectrum 2 in such a ma
hat the diversity degree level increased. SinceR 5 2, the
aximization in the MaSNAl algorithm was carried out in

implest way, that is, makingK vary from 1.6 to 2.4 with a ste
f 0.01 and calculating the real value of the integral Eq.

hat was to be maximized. The estimate ofR was theK value
or which the maximum was attained. We used this strateg
s not to introduce bias due to the procedure of maximiza
Four different sets of Monte Carlo simulations were car

ut.

Dependence onb. The first simulation was designed
how that the algorithm is weakly dependent onb and to
etermine an optimum value for the parameter itself. In
icular, three simulations at different signal-to-noise ra
SNR) and degree of diversity values were performed. For
imulation, a normalization factor ofR 5 2 was chosen an
stimatedK values were found by the MaSNAl algorith
F in Fig. 1) versusb values. As can be seen in this figure
ll three simulations mentioned above, forb values greate

han 10,K estimations practically no longer depended onb. In
articular, a good value for this parameter was found to beb 5
5. In fact, greaterb values not only did not give better resu
ut also lengthened computation time. In any case,K estima-

ions better than those given by the Dirac measure in Eq
E in Fig. 1) were obtained, even forb 5 1.

Dependence on the degree of diversity.The second set o
onte Carlo simulations was designed for studying the de
ence of the algorithm on the degree of diversity. In partic
esults of the MaSNAl algorithm were compared with b
ata obtained by maximizing the integral in Eq. [7], using
irac measure of Eq. [8] (Dirac algorithm), and results

ained by minimizing the integral in Eq. [2], where the in
ration domain was arbitrarily extended over the entire s
rum (Lebesgue algorithm). The parameters used
uantitatively compare the behavior of the three ab
entioned algorithms were the bias, the variance (var), an
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118 ROMANO ET AL.
ean squared error (MSE) defined by the following equat
espectively (9):

bias~K! 5 E@K# 2 R

var~K! 5 E@~K 2 E@K#! 2#

MSE~K! 5 E@~K 2 R! 2#.

In Fig. 2, the bias is reported as a function of the degre
iversity for simulated spectra having a signal-to-noise rat
04 6 1. As expected, the Lebesgue algorithm is the worR
stimator (K estimates out of range are not reported in Fig
nd can provide reasonable estimations only for very
egrees of diversity. In fact, only in this case does the arbi
xtension of the integration domain in Eq. [2] to the ove

FIG. 1. EstimatedK versusb parameter values for three different sim
ations. (a) Signal-to-noise ratio (SNR)5 103.46 1.0, degree of diversity5
41.816 0.42)%, normalization factorR 5 2. (b) SNR5 103.76 1.1, degree
f diversity 5 (44.646 0.36)%,R 5 2. (c) SNR5 105.66 1.6, degree o
iversity 5 (48.896 0.34)%,R 5 2.
s,

of
f

)
w
ry
ll

pectrum have negligible effects. On the other hand, both D
nd MaSNAl algorithms display a low bias up to degree
iversity of 50%. Nevertheless, MaSNAl presents a m
lower variation and consistently lower values than the D
lgorithm. The increment of the bias values for degre
iversity values greater than 50% is consistent with the val

imit of the MaSNAl algorithm.
In Fig. 3, the variance is reported as a function of the de

f diversity. In particular, in this figure it can be seen that
ariance is quite independent of the degree of diversity o
pectra and that there are no significant differences in
ispersion of estimated values around the true parameter
f the unbiased Dirac and MaSNAl algorithms.
Finally, the MaSNAl algorithm also yields better results t

he Dirac algorithm for the mean squared error, which
cribes the interplay between the bias and the dispersi
stimated values around the true parameter value, reporte

unction of the degree of diversity (results not shown).

FIG. 2. Percentage absolute bias versus degree of diversity: (F) MaSNAl
lgorithm; (E) Dirac algorithm; (‚) Lebesgue algorithm. For degree of div
ity values greater than 30%, the Lebesgue values are out of the range
gure and are not reported. Simulated spectra have mean SNR5 104.56 0.6.

FIG. 3. Variance versus degree of diversity: (F) MaSNAl algorithm; (E)
irac algorithm. Simulated spectra have mean SNR5 104.56 0.6.
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119ALGORITHM FOR NMR SPECTRAL NORMALIZATION
Dependence on the signal-to-noise ratio.The third set o
onte Carlo simulations was designed to examine the de
ence of the algorithm on the noise of the spectra. The si

o-noise ratio was defined by the equation

SNR5
c~n0! 2 c#

2 3 @¥ i5a1
a2 ~c~n i! 2 c# ! 2/N# 1/ 2 , [12]

here c# [ [¥ i5a1
a2 c(n i)]/(N 1 1), c(n 0) is the maximum

eak height,a1 anda2 are the limits of the noise region w
5 a1 2 a2, andc# is the DC level of the noise regio

igure 4 shows the bias as a function of the signal-to-n
atio for the Dirac and MaSNAl algorithms. The two alg
ithms have comparable bias for high SNR values, while
ower values, the MaSNAl algorithm is less biased. In Fig
he variances of the two algorithms are shown. Both the D
nd the MaSNAl algorithms yield comparable results. In

icular, the variance is constant for SNR value SNR$ 200. For

FIG. 4. Percentage absolute bias versus SNR: (F) MaSNAl algorithm; (E)
irac algorithm. Degree of diversity5 (43 6 2)%.

FIG. 5. Variance versus SNR: (F) MaSNAl algorithm; (E) Dirac algo-
ithm. Degree of diversity5 (43 6 2)%.
n-
al-

e

r
,
c

r-

ower SNR values, an exponential increase is observed d
he increased level of noise. Finally, the mean squared
ersus SNR (results not shown) clearly indicates that dis
ion of estimated values around the true parameter
s lower for the MaSNAl algorithm, especially at low SN
alues.

Dependence on R values.The last set of Monte Car
imulations was designed to test the MaSNAl algorithm
ifferent values of the normalization factor. In particular, e
oint of this simulation regards simulations with different t

normalization factor values (Fig. 6). In this figure,
stimated value of the normalization factor is reported as a
value function. As can be seen, there is an optimal cor

ion between estimated and true values.
From the results presented above, the Monte Carlo sim

ions demonstrate that, in the limit of the algorithm valid
degree of diversity, 50% and SNR. 70), the MaSNA
lgorithm is able to determine the normalization factorR of

wo NMR spectra with a bias of 2% at most.

QUANTITATIVE RELATIONSHIP BETWEEN TWO
SPECTRA CONDUCTED BY THE MaSNAl ALGORITHM

AND A MORE TRADITIONAL METHOD

In order to test the validity of the MaSNAl algorithm e
erimentally, two samples of known contents were compa
oth samples contained thyrotropin releasing factor (T
albiochem, MW 5 362.4), deutered methanol (CD3OD
9.96%, Cambridge Isotope Laboratories), and sodium
ethylsilyl[2,2,3,3-d4]propionate (TSP 10mmol/ml). The

rst sample (sample A) consisted for 4.5 mg of THR, 400ml
f CD3OD, and 10ml of TSP, while the second sample (sam

FIG. 6. EstimatedR values versus trueR values. Couples of spectra w
NR 5 144 6 7 and degree of diversity5 (41 6 5)%. Curve fit:y 5 ax 1
with a 5 0.99, b 5 0.03. Correlation ratior 5 1.
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120 ROMANO ET AL.
) consisted of 4.5 mg of THR, 600ml of CD3OD, and 10ml
f TSP.
Five 1H NMR spectra were obtained for each sample u
Bruker DPX digital spectrometer operating at 300 MHz.
xperiments were carried out with a 90° flip angle pulse an

ransients of 8-K data points corresponding to a62097.3 Hz
pectral window were accumulated.
Using the traditional method, that is, making a quantita

nalysis using the TSP standard, the following results
btained:

Sample THR CD3OD residual peak

A (38.76 3.6) mmol/ml (41.96 3.9) mmol/ml
B (20.26 2.5) mmol/ml (36.16 4.6) mmol/ml.

[13]

If we wish to compute the percentage difference (DCD3OD(%))
f CD3OD relative to THR for the sample A spectrum w
espect to the sample B spectrum, the following equation
e used,

DCD3OD~%! 5

CD3OD(A) 2
CD3OD(B)

THR(B)
THR(A)

CD3OD(B)

THR(B)
THR(A)

3 100,

[14]

here CD3OD(A) is the CD3OD concentration in spectrum
nd the other symbols have similar meanings.
The CD3OD concentrations are proportional to those

ained by considering the CD3OD residual peaks due to res
al protons (11); thus, the concentrations obtained by
D3OD residual peaks in Eq. [12] can be used directly in

13]. With this equation, using the concentrations obtaine
SP standard quantification (traditional method), aDCD3OD(%)

(239.4 6 8.7)% difference was obtained, while from
nown quantities of the added substances and using the
quation cited above, aDCD3OD(%) 5 (233.4 6 0.2)% differ-
nce was expected.
The same pairs of spectra (A, B) were utilized to obtain

ercentage differenceDCD3OD(%) of CD3OD relative to THR by
sing the MaSNAl algorithm. With the algorithm, the spe
ere normalized (i.e., the maximum numbers of spectral
ere made to superimpose; since THR contained the ma
f spectral lines, it was superimposed in the normalized s

ra). At this point, the percentage differenceDCD3OD(%) of
D3OD relative to THR between the spectra of sample
ormalized with respect to the spectra of sample B, was

ained directly by comparing the areas of the spectral CD3OD
esidual peaks. The value found wasDCD3OD(%) 5 (234.2 6
.3)%. As can be seen, both methods yelded percentag

erence results which were consistent with the expected
g
e
4

e
re

n

-

.
y

me

e

s
ity
c-

,
b-

if-
es.

owever, the MaSNAl algorithm allowed us to obtain go
esults without the use of any standard and without quant
ll the spectral lines, but rather by comparing the signa

nterest in the normalized spectra.

BIOLOGICAL APPLICATION

The MaSNAl algorithm was applied to the normalization
MR spectra of cell samples. In particular, the NMR spectr
ontrol human K562 erythroleukemic tumor cells and of th
ame cells grown for 48 h on polylysine were compared.
The two spectra, acquired in the same experimental c

ions, were analyzed by the MaSNAl algorithm and a norm
zation factor ofR 5 0.91 wasfound. The two normalize
pectra are reported in Fig. 7. As can be seen, the spectra
ormalization, overlap in a significant number of spectral li
his is confirmed by the self-consistency calculation, a
hich the degree of diversity was found to be 29%. In si

ations, in fact, the exact value ofR is known and thus the exa
egree of diversity can be computed in order to decide
pplicability of the method. In experimental cases, this te
pplicability must be made by self-consistency; that is
hould be founded on an estimated value forR. The degree o
iversity is then computed and checked to be certain tha

ess than 50%. If this is the case, the estimatedR value can b
ccepted for self-consistency. If the degree of diversit
reater than 50%, the estimatedR value must be rejected.
In Fig. 8, the difference spectrum obtained from subtrac

f the spectrum of controls from that of cells grown on po
ysine is reported. As can be seen, the majority of the sig
all around the baseline, which appears very flat. In addition
mmediate identification of the spectral components, w
ary between the two spectra and which are probably the r
f interaction with polylysine, can be obtained. In particu

ntense signals are present at about 3.4 to 2.9 ppm (partic
t 3.24, 3.22, 3.21, and 3.03 ppm corresponding to glyc
hosphatidylcholine, GPC; phosphatidylcholine, PC; cho
nd creatine, respectively), at about 2.1 to 2.4 ppm (particu
t 2.34 and 2.09 ppm assigned tog-glutamate andb-glutamate
espectively), at about 1.33 ppm corresponding to lactate
t about 1.6 to 0.6 ppm (the lipid region). The resonance

his region can be assigned to the CH2 and CH3 groups o
ipids. As is visible from the spectrum, control K562 ce
ontain a much smaller amount of PC with respect to p
ysine-exposed cells and a larger amount of GPC, choline
reatine. In addition, controls contain much lessg-glutamate
nd b-glutamate than treated cells, more lactate, fewer2

ipids, and more CH3 lipids. Thus, from these data, it appe
hat the MaSNAl algorithm presented can be adequately
ized for the comparison of NMR spectra of tumor cells.

CONCLUSIONS

In this paper, a new algorithm for the normalization
ouples of NMR spectra, used to compare these spectra a
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btain relative quantitative information without the need of
tandards, is presented. It consists of maximizing, by us
ign variable measure, the spectral regions in which spe
ines are proportional and evaluating the relative normaliza
actor. In this manner, normalization is accomplished by
loiting intrinsic sample properties and thus it consider

FIG. 7. Superimposed normalized spectra o

FIG. 8. Difference spectrum obtained from the subtraction
y
a

ral
n
-
y

implifies the measurement procedures. In fact, no additi
ubstances or particular manipulations of the samples
eeded, thus reducing contamination risks. In addition,
ethod is very easy to manage and the normalization p
ure requires only a few minutes. Furthermore, the me
ould be used in all situations in which the addition o

62 controls and of K562 cells grown on polylysine.

K562 control cells from the spectrum of cells grown on polylysine.
f K5
of
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122 ROMANO ET AL.
tandard is not easy to manage, for example, inin vivo spec-
roscopy. Monte Carlo simulations show that, in the app
ility limit of a degree of diversity less than 50%, and
ignal-to-noise ratio greater than 70 the algorithm is consi
nd presents very low bias and variance, thus giving an op
stimation of the normalization factor. The algorithm was

ested by comparing two samples of known contents an
ults were better then those obtained by the traditional me
ased on the use of a standard. Finally, it is demonstrate

he algorithm can be applied to real spectra of cell sam
llowing the extraction of important biological information
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ščennye funktsii v matematičeskoj fisike), Edizioni MIR, Moscow
(1981).

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
“Numerical Recipes in C: The Art of Scientific Computing,” second
ed., Cambridge Univ. Press, Cambridge, UK (1986).

0. M. K. Maple, “Digital Spectral Analysis with Applications,” Pren-
tice–Hall, New Jersey (1996).

1. A. E. Derome, “Modern NMR Tecniques for Chemistry Research,”
Pergamon, Elmsford, NY (1997).


	INTRODUCTION
	RESULTS AND DISCUSSION
	FIG. 1
	FIG. 2
	FIG. 3
	FIG.4
	FIG. 5
	FIG. 6

	QUANTITATIVE RELATIONSHIP BETWEEN TWO SPECTRA CONDUCTED BY THE MaSNAl ALGORITHM AND A MORE TRADITIONAL METHOD
	BIOLOGICAL APPLICATION
	CONCLUSIONS
	FIG. 7
	FIG. 8

	ACKNOWLEDGMENT
	REFERENCES

