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There is increasing use of high-resolution NMR spectroscopy to
examine variations in cell metabolism and/or structure in response
to numerous physical, chemical, and biological agents. In these
types of studies, in order to obtain relative quantitative informa-
tion, a comparison between signal intensities of control samples
and treated or exposed ones is often conducted. The methods thus
far developed for this purpose are not directly related to the
overall intrinsic properties of the samples, but rather to the addi-
tion of external substances of known concentrations or to indirect
measurement of internal substances. In this paper, a new method
for quantitatively comparing the spectra of cell samples is pre-
sented. It depends on a normalization algorithm which takes into
consideration all cell metabolites present in the sample. In partic-
ular, the algorithm is based on maximizing, by an opportune sign
variable measure, the spectral region in which the two spectra are
superimposed. The algorithm was tested by Monte Carlo simula-
tions as well as experimentally by comparing two samples of
known contents with the new method and with an older method
using a standard. At the end, the algorithm was applied to real
spectra of cell samples to show how it could be used to obtain
qualitative and quantitative biological information. © 1999 Academic
Press
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INTRODUCTION

thetic, such as sodium 3-trimethylsilgl 2,3,3-d,]propionate
(1, 2), or naturally occurring, such as glucos€'i@ spectra and
inorganic phosphate ifP spectrag). In addition, enzymatic
determination of the concentration of a metabolite present |
the samples themselves (e.g., the alanine methyl doublet) a
a subsequent comparison of the intensities of resonances w
that of the metabolite itself have also been utilize&dl. @All
these methods are related not directly to the overall intrinsi
properties of the samples, but rather to the addition of extern
substances of known concentration or to indirect measureme
of internal substances.

In this paper, a new method for quantitatively comparing th
spectra of cell samples is presented. It is based on a norm
ization algorithm which takes into consideration all cell me:
tabolites present in the sample. Since concentration differenc
result in proportional variations of spectral intensities, nonprc
portional changes can most likely be attributed to the effects
the agent. The proportional variations are described by tt
normalization factoR, which can be calculated by the algo-
rithm. In particular, it consists in maximizing, by using a sign
variable measure, the spectral regions in which spectral lin
are proportional. The algorithm was tested by Monte Carl
simulations, which demonstrated its ability to determine th
normalization factor with very low bias. In order to test the
validity of the algorithm experimentally, two samples of

There is increasing use of high-resolution NMR spectrognown contents were compared using a traditional metho
copy to examine variations in cell metabolism and/or structuggsed on the use of a standard, and the new one, based on
in response to numerous physical, chemical, and biologicegborithm_
agents. In these types of studies, in order to obtain relativeat the end, the algorithm was applied to real spectra of ce

quantitative information, a comparison between signal intengiamples showing how it could be used to obtain qualitative ar
ties of control samples and treated or exposed samples is of§gRntitative biological information.

conducted. For this purpose various methods have been devel-

oped. For instance, reference compounds added directly to the
cell samples have been used. These compounds may be syn-

RESULTS AND DISCUSSION

The Algorithm

! The MaSNAI program, an Apple Power PC version or the C version, is
freely available from Dr. Rocco Romano, Dipartimento di Scienze Fisiche, | et us consider two NMR spectréy (v) andy,(v), wherev
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is the frequency. ISpis the entire spectrum, let us denote by

=R — Sk (normalizable regions) the spectral regions relative t

letter confirming that the program will be used for scientific, noncommercifi€ baseline and to the spectral lines which have proportion

purposes only.
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intensities due to concentration differences, wiledenotes
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those regions relative to spectral lines with various ratio intesuperimposed foK = R. But that is in contrast with the hypoth-
sities due to effects induced by interaction with a particulasis that the degree of diversity is less than 50% and thus,=for
agent. Two spectral pointss,(v,) and ,(v,), can be consid- 0, S; must be the minimum set I8

ered physically superimposed, for a given estimate of theFor this reason, one may ask that the size of the normalizat

normalization factoK, if their distance, region,
d(vo; K) = [Y(vo) — Ksafry(wo)], [1]
I(K) = dv, [6]
is equal to or less thane2wheree is the rms noise. If the two Sp-S¢

above-mentioned spectra are correctly normalized, spectral

points belonging to the normalizable regidhg — S are well should be a maximum whelk = R. This condition is suffi-

superimposed, such that the area between the spectra in tlogzat by itself to give an estimate for the normalization facto

regions is at a minimum. An estimate of the normalizatioR provided that a degree of diversity of less than 50% an

factor R can then be obtained by finding the valuekofvhich  spectra not to noisy are considered.

minimizes the integral For the S family, a set of measureg.«({ v}) for which
wk(Sk) = 0 for all K can be easily constructed. Thus, the

above-mentioned integral can be rewritten as
f d(v; K)dv. [2]
Sp-Sk
H(K) = f duk(v). [7]
Unfortunately, in the integration domain of the integral in Eq. Sp
[2] there is theSg set, which is not known, being dependent on
the unknownR parameter. The simplest family of measures having a null valueSns
Let us define a new effective distance, the Dirac one §),
8(vo; K) = 6(d(ve; K) — 2€)d(v; K), 3] ro({Vh) = X(-=0(8(v; K)), [8]

where6 (X) is the step function of Heavisid&,(6), defined by with x_..,(8(»; K)) being the characteristic function of ¢,
0], defined by the relatione}

1 forx>0
G(X):{o forx = 0 4] 1 ifx€E (—w, 0]
X(—=0/(X) = {0 if x¢ (—o0, 0]" [©]
which is zero for each pair of physically superimposed points.
Let us consider the& family of S¢ sets, With this measure, maximizing the integral in Eq. [7] is
equivalent to maximizing the number of superimposed spectr
S = {v € Sp &(v; K) > 0}. [5] points. In the above description, the only effect of noise cor

sidered thus far is defining as superimposed those points f
By definition, S; belongs to this family. Furthermore, let uswhich d(v; K) <= 2e. However, noise also produces casua
define thedegree of diversitypetween the two spectra as thesuperpositions, that is, superpositions that cannot be conside
percentage ratio betwee®y and Sp. The degree of diversity to belong to the normalizable regions, and prevents son
can be considered to be a measure of the variations inducedsbperpositions that ought to be present. In addition, it should |
interaction with the agent. considered that isolated crosslinks (points of intersection b

If the degree of diversity of the two spectra is less than 50%yeen two spectral lines) also satisfy the conditigm; K) =

one has to expect th& is the minimum size set i In fact, for 0 and thus may be improperly included in the integral of Eg
e = 0 (that is, for ideal spectra without noise), if the degree ¢7]. In fact, crosslinks cannot belong to the normalizable re
diversity of the two spectra is less than 50% (i.e. Kor Rmore gions where spectral lines have all the same proportionality at
than 50% of spectral points are superimposed) @nid not the thus cannot intersect between themselves, but from the Dir.
minimum set inS there should be K value,K = K* # R, such measure’s point of view they are superimposed points and mt
that the number of points i is less than the number of pointsbe included in the integral of Eq. [7]. In order to consider thes
in S:. In such a case, fok = K* # R more than 50% of the effects, a measure which assigns a weight to points based
spectral points are well superimposed. Thuskfer R, more than their neighbors must be introduced. It can be assumed thai
50% of spectral points should not be superimposed, becavasedom noise superposition event or a crosslink is isolated a
points which are superimposed f&f = K* # R cannot be thus the neighboring points are not superimposed, while
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values from normalizable regions have neighboring pointsalizations of couples of spectra (each FID consisting of 204
which are also superimposed. points, zero-filled to 32,768 points and then Fourier trans
In order to take these considerations in account, the maférmed). The program was written in*Cand to generate
mum superposition normalization algorithm, which will beandom numbers the Minimal random number generator &
denoted as MaSNAI, is presented. In particular this new algBark and Miller with Bays—Durham shuffle and added safe

rithm is based on the sign variable measige§) guards was used). Each spectrum was made of 81 spectra
lines with the majority of spectral lines having amplitudes in
Urmasnal({h) ratio of 1:2. The range of amplitudes were, in arbitrary units

from 35,000 to 60,000 (the range presented is relative to tt

v+3p , spectra with smaller amplitudes, so that the same range must

= X-=0/(8(v; K)) J (1=26(8(v'; K))) duplicated for the amplitudes of spectra with greater ampl
v—3p tudes). The line width range was 20—96 Hz. The number ¢

X @~ (=B, [10] nonproportional spectral lines, that is, of those spectral line

having ratios different from 1:2, was varied from 2 to 20,

wheref is an opportune constant and the other quantities ha%vays with 81 as_the total number of sp_ectral I|nes_ pe
ectrum. The amplitudes of these spectral lines were distri

already been defined. SP

The first factor in Eq. [10] is the Dirac term, which aIIOWSuted between those having a greater intensity in spectrum 1 a

i 1) to satisfy the conditionussu(Sk) = O for all K. those having a greater intensity in spectrum 2 in such a manr

The second factor assigns to thevalues a weight which that .th.e d!ver§|ty degree level mgreased. S”ﬁc.e: 2, the
depends upon the neighboring points in the intervat (38, v maximization in the MaSNAI algorithm was carried out in the

+ 3pB). In fact, due to the Gaussian weighting, if the limits oﬁimpIESt way, that is, makirig vary from 1.6 to 2.4 with a step

the integral were changed te o, +°¢), the measure would not of 0.01 and calculating the real value of the integral Eq. [11

be affected very much. To each neighboring superimpavSed;hat Vr\]’f”lsht% be ma}ximized. The gsti(rjnaterWaz ﬂ;}gK value <
value is assigned awelght ef—(v—v’)zlﬁ2 which depends on the or which the maximum was attained. We used this Strategy S

distance ofv’ from », while to the nonsuperimposed as not to introduce bias due to the procedure of maximizatiol
values, a weight Of_e’—(v—v’)?/ﬁz is assigned. In this manner Four different sets of Monte Carlo simulations were carrie

the intrinsic symmetry between superimposed and nonHt
perimposed neighboring points is respected andalues Dependence orB. The first simulation was designed to
which have the majority of neighboring points superimshow that the algorithm is weakly dependent prand to
posed give a greater contribution to the integral determine an optimum value for the parameter itself. In pai
ticular, three simulations at different signal-to-noise ratio:
438 (SNR) and degree of diversity values were performed. For ea
1(K) = f X(_e0(8(v; K)) f (1—-20(8(v'; K))) simulation, a normalization factor & = 2 was chosen and
estimatedK values were found by the MaSNAI algorithm
(® in Fig. 1) versus3 values. As can be seen in this figure, in
X e "Ry do, [11] all three simulations mentioned above, fBrvalues greater
than 10K estimations practically no longer depended@rin
which must be maximized. On the other hamdjalues which particular, a good value for this parameter was found t8 ke
have many nonsuperimposed neighboring points can actudlly. In fact, greateB values not only did not give better results,
give a negative contribution. but also lengthened computation time. In any cé#sestima-
It should be noted that the measure presented above depdiuis better than those given by the Dirac measure in Eq. [
on the parametep. Nevertheless, it can be shown that thi¢O in Fig. 1) were obtained, even f@ = 1.

dependence is very weak and that, in part.icular, there is abependence on the degree of diversityhe second set of
threshold such that fqﬁ. values greater than this thresh_old, th'lnvlonte Carlo simulations was designed for studying the depel
results are practically independent of the parameter itself. dence of the algorithm on the degree of diversity. In particulal
results of the MaSNAI algorithm were compared with botf
data obtained by maximizing the integral in Eq. [7], using the
Both simulated spectra and experimentaNMR spectra of Dirac measure of Eq. [8] (Dirac algorithm), and results ob
known contents were utilized to test the MaSNAI algorithmained by minimizing the integral in Eq. [2], where the inte-
The simulated spectra were generated by Fourier transformggation domain was arbitrarily extended over the entire spe
tion of complex superposition of exponential decaying sindrum (Lebesgue algorithm). The parameters used 't
soids with additive Gaussian noise. Each point of these Morgaantitatively compare the behavior of the three above
Carlo simulations consisted of 50 independent Gaussian namsentioned algorithms were the bias, the variance (var), and t!

Sp v—3p

Simulations Testing the Algorithm
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a) K values

b) K values

1.995
1.99

1.985

¢) K values

1.98

1.975

1.97

FIG. 1. EstimatedK versusp parameter values for three different simu-
lations. (a) Signal-to-noise ratio (SNR) 103.4+ 1.0, degree of diversity
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FIG. 2. Percentage absolute bias versus degree of diver@yMaSNAI
algorithm; (©) Dirac algorithm; () Lebesgue algorithm. For degree of diver-
sity values greater than 30%, the Lebesgue values are out of the range of
figure and are not reported. Simulated spectra have mean=SN&.5+ 0.6.

spectrum have negligible effects. On the other hand, both Dir:
and MaSNAI algorithms display a low bias up to degrees ¢
diversity of 50%. Nevertheless, MaSNAI presents a muc
slower variation and consistently lower values than the Dira
algorithm. The increment of the bias values for degree c
diversity values greater than 50% is consistent with the validit
limit of the MaSNAI algorithm.

In Fig. 3, the variance is reported as a function of the degre
of diversity. In particular, in this figure it can be seen that the
variance is quite independent of the degree of diversity of th
spectra and that there are no significant differences in tt
dispersion of estimated values around the true parameter val
of the unbiased Dirac and MaSNAI algorithms.

Finally, the MaSNAI algorithm also yields better results thar
the Dirac algorithm for the mean squared error, which de

(41.81= 0.42)%, normalization factd® = 2. (b) SNR= 103.7+ 1.1, degree  scribes the interplay between the bias and the dispersion

of diversity = (44.64x 0.36)%,R = 2. (c) SNR= 105.6 = 1.6, degree of estimated values around the true parameter value, reported
diversity = (48.89* 0.34)%,R = 2.

mean squared error (MSE) defined by the following equations,
respectively 9):

In Fig. 2, the bias is reported as a function of the degree of 20107 |
diversity for simulated spectra having a signal-to-noise ratio of [ o
104 = 1. As expected, the Lebesgue algorithm is the wBrst
estimator K estimates out of range are not reported in Fig. 2)
and can provide reasonable estimations only for very low

biagK) = E[K] — R
var(K) = E[(K — E[K])?]
MSE(K) = E[(K — R)2].

function of the degree of diversity (results not shown).

1.0 10
80107 [ -

6.0 10° |- o

Variance

4.010° | S ..

0.010° L1
20 25 30 35 40 45 50

Degree of Diversity(%)

degrees of diversity. In fact, only in this case does the arbitraryg. 3. variance versus degree of diversit@)(MaSNAI algorithm: O)
extension of the integration domain in Eq. [2] to the overabirac algorithm. Simulated spectra have mean SNRO04.5+ 0.6.
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FIG. 4. Percentage absolute bias versus SNB}:NlaSNAI algorithm; ©) 0 1 2 3 4 5 6 7
Dirac algorithm. Degree of diversity (43 = 2)%. True R values

FIG. 6. EstimatedR values versus truR values. Couples of spectra with

. . . . SNR = 144 += 7 and degree of diversity (41 = 5)%. Curve fity = ax +
Dependence on the signal-to-noise raticlhe third set of p ith a = 0.99,b = 0.03. Correlation ratior = 1.

Monte Carlo simulations was designed to examine the depen-
dence of the algorithm on the noise of the spectra. The signal-

to-noise ratio was defined by the equation lower SNR values, an exponential increase is observed due
B the increased level of noise. Finally, the mean squared err
SNR = P(vo) — [12] versus SNR (results not shown) clearly indicates that dispe

2 X [Z2. (P(v) — ) 2NV’ sion of estimated values around the true parameter vall

is lower for the MaSNAI algorithm, especially at low SNR
where g = [S2, ¥(v)]/(N + 1), ¢(v,) is the maximum Vvalues.
peak heightal anda2 are the limits of the noise region with  Dependence on R valuesThe last set of Monte Carlo
N = al — a2, andy is the DC level of the noise region.simulations was designed to test the MaSNAI algorithm fo
Figure 4 shows the bias as a function of the signal-to-noigferent values of the normalization factor. In particular, eacl
ratio for the Dirac and MaSNAI algorithms. The two algopoint of this simulation regards simulations with different true
rithms have comparable bias for high SNR values, while f® normalization factor values (Fig. 6). In this figure, the
lower values, the MaSNAI algorithm is less biased. In Fig. &stimated value of the normalization factor is reported as a trt
the variances of the two algorithms are shown. Both the Dir@value function. As can be seen, there is an optimal correl
and the MaSNAI algorithms yield comparable results. In pation between estimated and true values.
ticular, the variance is constant for SNR value SHR00. For From the results presented above, the Monte Carlo simul
tions demonstrate that, in the limit of the algorithm validity
(degree of diversity< 50% and SNR> 70), the MaSNAI

4.0 10 o : e e algorithm is able to determine the normalization fad®pbf
* i two NMR spectra with a bias of 2% at most.
3.010% -
N O ] QUANTITATIVE RELATIONSHIP BETWEEN TWO
§ 4 ] SPECTRA CONDUCTED BY THE MaSNAI ALGORITHM
5 00 ] AND A MORE TRADITIONAL METHOD
1.010% = e ] In order to test the validity of the MaSNAI algorithm ex-
”30 e ; perimentally, two samples of known contents were compare
. * L, R . Both samples contained thyrotropin releasing factor (THF
00 10 e e e s as0 Calbiochem, MW = 362.4), deutered _methanol (C;d_)D
99.96%, Cambridge Isotope Laboratories), and sodium tr
SNR methylsily[2,2,3,3d,]propionate (TSP 10umol/ml). The

FIG. 5. Variance versus SNR®) MaSNAI algorithm: O) Dirac algo- 1IrSt sample (sample A) consisted for 4.5 mg of THR, 440
rithm. Degree of diversity= (43 + 2)%. of CD;0D, and 10ul of TSP, while the second sample (sample
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B) consisted of 4.5 mg of THR, 600l of CD,0OD, and 10ul However, the MaSNAI algorithm allowed us to obtain gooc

of TSP. results without the use of any standard and without quantifyr
Five '"H NMR spectra were obtained for each sample usiral the spectral lines, but rather by comparing the signals «

a Bruker DPX digital spectrometer operating at 300 MHz. Thaterest in the normalized spectra.

experiments were carried out with a 90° flip angle pulse and 64

transients of 8-K data points corresponding te-2097.3 Hz BIOLOGICAL APPLICATION

spectral window were accumulated. The MaSNAI algorithm was applied to the normalization of

Using the traditional method, that is, making a quantitatiVﬁMR spectra of cell samples. In particular, the NMR spectra c

analysis using the TSP standard, the following results WelBntrol human K562 erythroleukemic tumor cells and of thes

obtained: :
same cells grown for 48 h on polylysine were compared.
Sample THR CROD residual peak ~ The two spectra, acquired in the same experimental conc
tions, were analyzed by the MaSNAI algorithm and a normal
A (38.7 = 3.6) umol/ml (41.9% 3.9) umol/ml  ization factor ofR = 0.91 wasfound. The two normalized
B (20.2% 2.5) pmol/ml  (36.1% 4.6) umol/ml.  spectra are reported in Fig. 7. As can be seen, the spectra, a

normalization, overlap in a significant number of spectral lines
This is confirmed by the self-consistency calculation, afte
) ) which the degree of diversity was found to be 29%. In simu

If we wish to compute the percentage differenseton(%)) |ations, in fact, the exact value Bfis known and thus the exact
of CD;OD relative to THR for the sample A spectrum withyegree of diversity can be computed in order to decide tr

respect to the sample B spectrum, the following equation cgppjicability of the method. In experimental cases, this test «

[13]

be used, applicability must be made by self-consistency; that is, i
should be founded on an estimated valueRoiThe degree of

CD;0D(B) diversity is then computed and checked to be certain that it
CD;OD(A) — THR(B) THR(A) less than 50%. If this is the case, the estimd&edhlue can be

Acpon(%) = CD,0D(B) X100,  accepted for self-consistency. If the degree of diversity i

— 5o THR(A) greater than 50%, the estimatBdvalue must be rejected.

THR(B) In Fig. 8, the diff trum obtained from subtracti

[14] g. 8, the difference spectrum obtained from subtractio

of the spectrum of controls from that of cells grown on poly-

. Lo lysine is reported. As can be seen, the majority of the signa
where CROD(A) is the CDOD concentration in spectrum Afall around the baseline, which appears very flat. In addition, &

and the other symbols have similar meanings. . : : P ;
: . immediate identification of the spectral components, whic
The CD,OD concentrations are proportional to those ob- :
. S . ., vary between the two spectra and which are probably the res
tained by considering the GDD residual peaks due to resid- . . : ; ) .
i . ) of interaction with polylysine, can be obtained. In particular
ual protons {1); thus, the concentrations obtained by th|entense signals are present at about 3.4 to 2.9 ppm (particula
CD;OD residual peaks in Eq. [12] can be used directly in E%. 9 P ) > PPMAP

. . . . : . t 3.24, 3.22, 3.21, and 3.03 ppm corresponding to glycer
[13]. With this equation, using the concentrations obtained b . . i . : ] :
TSP standard quantification (traditional method)y@,on(%) p\ﬁosphatldylcholme, GPC; phosphatidylcholine, PC; choline

= (—39.4 £ 8.7)% difference was obtained, while from theg?g g;e:’::gez, Begspeﬁil\éilgi)’:ég;;:ﬁé;;?:;é? Tuﬁgfnrgfg ar
known quantities of the added substances and using the same = PP 9 g ’

. : ORY — on qirear.  TESPECtively), at about 1.33 ppm corresponding to lactate, al
equation cited above, Aco,0p(%) = (~33.4 = 0.2)% differ at about 1.6 to 0.6 ppm (the lipid region). The resonances
ence was expected.

The same pairs of spectra (A, B) were utilized to obtain tP]tIQIS region can be assigned to the £ahd CH groups of

percentage differenatep,op(%) of CD;OD relative to THR by pids. As is visible from the spectrum, control K562 cells

using the MaSNAI algorithm. With the algorithm, the spectrContaln a much smaller amount of PC with respect to poly

. . . . E/sine-exposed cells and a larger amount of GPC, choline, al
were normalized (i.e., the maximum numbers of spectral lin€s

. o : ._Creatine. In addition, controls contain much lesglutamate
were made to superimpose; since THR contained the majorit

. ) . . . and B-glutamate than treated cells, more lactate, fewer, Ck
of spectral lines, it was superimposed in the normalized Specs

tra). At this point, the percentage differencgo,on(%) of ipids, and more CHllipids. Thus, from these data, it appears

CD,OD relative to THR between the spectra of sample Ahat the MaSNAI algorlthm presented can be adequately ut
. ) IbZed for the comparison of NMR spectra of tumor cells.

normalized with respect to the spectra of sample B, was ob-

tained directly by comparing the areas of the spectral@D CONCLUSIONS

residual peaks. The value found wAgy,op(%) = (—34.2 =

1.3)%. As can be seen, both methods yelded percentage difin this paper, a new algorithm for the normalization of

ference results which were consistent with the expected onesuples of NMR spectra, used to compare these spectra anc
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Chemical Shift (ppm)

FIG. 7. Superimposed normalized spectra of K562 controls and of K562 cells grown on polylysine.

obtain relative quantitative information without the need of angimplifies the measurement procedures. In fact, no addition
standards, is presented. It consists of maximizing, by usingabstances or particular manipulations of the samples a
sign variable measure, the spectral regions in which spectngleded, thus reducing contamination risks. In addition, th
lines are proportional and evaluating the relative normalizationethod is very easy to manage and the normalization proc
factor. In this manner, normalization is accomplished by exture requires only a few minutes. Furthermore, the methc
ploiting intrinsic sample properties and thus it considerabyould be used in all situations in which the addition of &
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FIG. 8. Difference spectrum obtained from the subtraction of K562 control cells from the spectrum of cells grown on polylysine.
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standard is not easy to manage, for examplénisivo spec- Kuchel, *H and *P NMR and HPLC studies of mouse L1210 leu-
troscopy. Monte Carlo simulations show that, in the applica- kemia cell extracts: The effe_ct of Au(l) and Cu(l) diphosphine com-
bility limit of a degree of diversity less than 50%, and a plggi? on the cell metabolism, Magn. Reson. Med. 18, 142-158
signal-to-naise ratio gre_ater than 7.0 the algorlthm IS ConSIS.tegj[ S. M. Ronen, E. Rushkin, and H. Degani, Lipid metabolism in large
and presents very low bias and variance, thus giving an optimal 147p numan breast cancer spheroids: P and *C NMR studies of
estimation of the normalization factor. The algorithm was also choline and ethanolamine uptake, Biochim. Biophys. Acta 1138,
tested by comparing two samples of known contents and re- 203-212 (1992).

sults were better then those obtained by the traditional methad S. Cérdan, R. Parrilla, J. Santoro, and M. Rico, *H NMR detection
based on the use of a standard. Finally, it is demonstrated thatof cerebral myo-inositol, FEBS Lett. 187, 167-172 (1985).

the algorithm can be applied to real spectra of cell sample§; A- N. K. Kolmogorov and S. V. Fomin, “Elementi di teoria delle

allowing the extraction of important biological information. ~ funzioni e di analisi funzionale” [Elementy teorii funktsij i
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